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A Geometric Rendezvous-Based Domain Model for Data Transfer

Abstract

The Data Transfer Kit (DTK) is a software component designed to pro-
vide parallel services for mesh and geometry searching and data transfer for
arbitrary physics components. In many physics applications, the concept of
mesh and geometry is used to subdivide the physical domain into a discrete
representation to facilitate the solution of the model problems that describe it.
Additionally, the concept of the field is used to apply degrees of freedom to the
mesh or geometry as a means of function discretization. With the increased
development efforts in multiphysics simulation, adaptive mesh simulations, and
other multiple mesh/geometry problems, generating parallel topology maps for
transferring fields and other data between meshes is a common operation. This
document describes a domain model for mesh, geometry, fields, and parallel
topology maps based on the concept of geometric rendezvous as implemented
in DTK.
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1 Introduction

In many physics applications, it is often desired to transfer fields (i.e. degrees of
freedom or other data) between meshes or geometries that may or may not conform
in physical space. In addition, for massively parallel simulations, it is typical that
geometric domains not only do not conform spatially, but also that their parallel
decompositions do not correlate and are independent of one another due to physics-
based partitioning and discretization requirements. As an example, this situation
can occur in multiphysics simulations where physics fields provide feedback between
solution iterations or adaptive mesh simulations where fields must be moved between
meshes after refining and coarsening. It is therefore desirable to have a set of tools
to relate mesh and geometry of arbitrary parallel decomposition such that fields and
other data can be transferred between them.

The Data Transfer Kit (DTK) is a software component designed to provide parallel
services for mesh and geometry searching and data transfer based on the concept
of the rendezvous decomposition [2]. To achieve a component design for use with
arbitrary physics codes, general concepts of mesh, geometry, and fields are employed
to provide access to these services. This document will outline the concepts of parallel
communicators, mesh, geometry, fields, parallel topology maps, and the rendezvous
decomposition and how they are modeled within the design of DTK. An example of
data transfer using these concepts is also provided.

1.1 Basic Definitions

The following definitions are used throughout this document and serve as a basis for
the domain model and discussion.

� Communicator: An object that allows communication of data between and
controls the execution of operations on parallel processes.

� Local Operation: An operation that occurs within the context of a single
process. All data and operations on that data are performed within the memory
space of that process, independent of all other processes.

� Global Operation: An operation that occurs within the context of the entire
parallel domain of the simulation. All data is potentially shared via communi-
cator operations.

� Ordinal: A value that uniquely identifies an object from other objects of the
same type. This number is a positive and real integer such that for a given
ordinal, i, i ∈ N0.

� Geometry: An object or collection of objects that has n physical dimensions
and a spatial domain Ω ∈ Rn that is bounded by a boundary Γ ∈ Rn.

� Measure: The measure of a geometry is defined as length in 1 dimension, area
in 2 dimensions, and volume in 3 dimensions.

6



A Geometric Rendezvous-Based Domain Model for Data Transfer

� Vertex: A zero-dimensional geometric object that has a globally unique ordinal
and Cartesian coordinates that describe its geometric position. Vertices can
have coordinates in 1, 2, or 3 dimensions.

� Node: A node is zero-dimensional mathematical object that describes the sup-
port points of a discretized function (e.g. the Lagrange basis points of a finite
element discretization).

� Mesh Element: A mesh element, ω, is a discrete component of the spatial
domain Ω that is constructed by vertices. These vertices have a canonical
ordering and dimensionality that uniquely specifies the element type.

� Element Topology: A specific number of vertices with a specific canonical
vertex ordering with a specific dimensionality. Examples include 4-vertex tetra-
hedrons and 3-vertex triangles. Every mesh element has an element topology.

� Mesh: A discrete representation of the n-dimensional spatial domain Ω ∈ Rn

consisting of an arbitrary number of mesh elements, ω. The mesh elements
that construct a single mesh may not intersect. However, mesh elements may
intersect if they belong to different meshes. Mesh can be considered a subset of
geometry.

� Mesh Block: A collection of mesh elements that exist in the same mesh and
have the same element topology. A mesh is composed of one or more mesh
blocks.

� Degrees of Freedom: Discrete values generated by a physics computation
that describe the discretization of a quantity over phase space.

� Field: A discrete representaion of a D-dimensional function, F , over the do-
main Ω ∈ Rn such that F (r) : Rn → RD,∀r ∈ Ω. A field spans a domain and
the discretization of that domain (e.g. a domain is resolved by mesh elements
and therefore the field spans the mesh and its elements).

� Evaluator: An object that evaluates a field at a physical location, r̂, in the
spatial domain Ω by computing F (r̂). This operation is valid ∀r̂ ∈ Ω.

� Source: A geometry that owns a spatial domain, ΩS ∈ Rn, over which an
evaluator can be applied for a given field F (s) where s ∈ Ωs.

� Data Space: A field, G, of dimension D, to which data can be applied such
that G(r) : Rn → RD, r ∈ Rn.

� Target: A geometry that owns a spatial domain, ΩT ∈ Rn, over which a data
space, G(t) can be defined where t ∈ ΩT .

� Geometric Rendezvous: A geometric-based parallel redistribution of the
original source and target geometries defined over the region ΩR = ΩS ∩ ΩT .
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� Parallel Topology Map: An operator, M , that defines the translation of a
field, F (s), from a source spatial domain, ΩS, to a field, G(t), in the target
spatial domain ΩT , such that G(t) ← M(F (s)) and M : RD → RD,∀r ∈ ΩR,
where ΩR is the geometric rendezvous of the source and target.
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2 Communicators

A communicator is a concept that encapsulates ownership of operations in a parallel
computation. A parallel communicator in the context of DTK can be taken as a direct
reference to a Message Passing Interface (MPI) communicator [3]. A single commu-
nicator has a set of process space over which it may perform operations. Multiple
communicators may exist in a single process space and own the same processes. For
objects decomposed in parallel, the term global will be used to refer to concepts that
apply across the entire parallel domain owned by a communicator while the term local
will be used to refer to concepts that only exist in the domain of a single parallel pro-
cess. A communicator is not required to encompass all of global process space. Based
on this, we can consider union and intersection operations. Two communicators will
be deemed equivalent if they own the same set of processes.

2.1 Communicator Union

A union operation will compute the union in process space of all communicators in-
volved. This will be a common operation for cases where one particular geometric
component in the data transfer operation is decomposed over a different communi-
cator than another geometric component. Figure 1 provides an example of a union
operation. In this example, two communicators, A and B, are defined within the do-
main of a global communicator (typically, but not necessarily MPI COMM WORLD)
but do not encapsulate all of it. All processes that exist either in communicator A or
B will be used to form the new union communicator (Cunion) as a subset of the global
communicator (Cglobal) such that Cunion = A∪B and Cunion ∈ Cglobal. This operation
is only valid if A ∈ Cglobal and B ∈ Cglobal.

2.2 Communicator Intersection

An intersection operation will compute the intersection in process space of all commu-
nicators involved. Figure 2 provides an example of an intersection operation. In this
example, two communicators, A and B, are defined within a global communicator but
do not encapsulate all of it. All processes that exist in both communicator A and B
will be used to form the intersection communicator. The intersection communicator
(Cintersect) is a subset of the global communicator (Cglobal) such that Cintersect = A∩B
and Cintersect ∈ Cglobal. This operation is only valid if A ∈ Cglobal and B ∈ Cglobal.
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Figure 1: Communicator union operation diagram.
In this example, communicator A and communicator B are contained within the

global communicator but do not encapsulate all of it. Their combined
communication spaces form the union. The union is a subset of the global

communicator.
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Figure 2: Communicator intersection operation diagram.
In this example, communicator A and communicator B are contained within the
global communicator but do not encapsulate all of it. The blue communication

space forms the intersection.
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3 Mesh

In order to access DTK mesh services, a subset of the information needed to describe
the mesh is required. This subset consists of vertices and their coordinates, elements
and the vertices that construct them, and the communicator over which they are
defined. The vertices that construct an element have both a canonical ordering con-
sistent across all elements of that topology in a mesh and a permutation list that
describes how this ordering varies from DTK canonical ordering. This subset has
been demonstrated as sufficient for applying data transfer algorithms [4] and can be
formulated in such a way that algorithms can be generated that are data structure
neutral [5]. In addition, for meshes that contain multiple element topologies, the
concept of mesh blocked by element topology is utilized.

3.1 Mesh Vertices

Vertices are the lowest level geometric component of the mesh. All vertices have a
globally unique ordinal serving as an identification number for the vertex in global
operations. A vertex can have 1, 2, or 3 dimensions but all vertices in a mesh must
have the same dimension. To specify its geometric position, each vertex has Cartesian
(x,y,z) coordinates. A vertex must provide only the coordinates for the specified
vertex dimension, no more or no less (e.g. a 2 dimensional vertex must provide x and
y coordinates but not a z coordinate). A vertex may be repeated any number of times
across the parallel domain with unlimited local and global instances. However, every
vertex with the same globally unique ordinal must have the same coordinates. We
make a distinction here between vertices and nodes. In the context of DTK, a vertex is
purely a geometric object. It describes the spatial positioning and geometric bounds of
an element. A node is purely a mathematical object. It descrbibes the descretization
associated with a particular element described within the natural coordinate system
of that element. It is possible that in the physical coordinate frame that a node
and vertex may occupy the same geometric location, however DTK does not consider
nodes in its formulation.

As an example, consider Figure 3 depicting a series of vertices contained in a mesh.
Each vertex provides a globally unique ordinal and set of 3 dimensional coordinates.

3.2 Mesh Elements

Elements are the second level of abstraction in the mesh description above vertices.
All elements have a globally unique ordinal serving as an identification number for
the element in global operations. This globally unique ordinal can be the same as
a globally unique ordinal for a vertex in the mesh as DTK distinguishes between
vertices and elements. An element has a topology defining its physical structure
(e.g. tetrahedron, hexahedron, etc.) and a number of vertices needed to generate
that topology. Elements are constructed from vertices via a connectivity list. The
connectivity list for a particular element will contain the unique vertex global ordinals
that construct its linear form. An element may be repeated any number of times
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Ordinal: 12

Coords: (0,1,1)

Ordinal: 33

Coords: (1,1,1)

Ordinal: 25

Coords: (0,0,0)

Ordinal: 9

Coords: (1,0,0)

Ordinal: 17

Coords: (1,1,0)

Ordinal: 4

Coords: (0,1,1)

Ordinal: 87

Coords: (0,1,0)

Ordinal: 39

Coords: (0,0,1)

Figure 3: Basic vertex description for a mesh.
Each vertex is required to have a unique global ordinal, a specified dimensionality,

and Cartesian coordinates corresponding to that dimensonality. The vertices in this
example are 3 dimensional.

across the parallel domain (i.e. it may have unlimited local instances), however,
every globally unique ordinal must have the same connectivity list associated with
it. For consistency, DTK uses the MoaB Canonical Numbering (MBCN) scheme as a
canonical ordering scheme [6]. Each element in a client mesh can be described with
a connectivity list using any canonical scheme of choice, however, the relationship
between this canonical numbering scheme and the DTK canonical numbering scheme
must be made available. Each element topology is therefore also described by a
permutation list. A permutation list specifies the variation in ordering between the
DTK canonical numbering scheme and the client canonical numbering scheme. A
permutation list must be described globally, regardless of whether or not elements
exist on a particular process. See Appendix A for canonical element topologies as
defined by DTK. These are the canonical vertex orderings that must be used when
generating a permutation list for a client element topology. Mesh elements may not
intersect any other elements in a single mesh description. An element may intersect
other elements if those elements exist in another mesh (this is in fact a common
situation in data transfer).

Consider the continuation of our example in Figure 4 showing a linear hexahedron
element generated from the vertices in Figure 3. The element has been given a unique
global ordinal and the connectivity and permutation lists have been specified. The
connectivity list specifies an element construction from counter-clockwise movement
around the bottom face and then counter-clockwise movement around the top face
that is native to the client. The MBCN canonical ordering for linear hexahedrons
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is given at the vertices. Note that MBCN ordering instead uses clockwise rotation
around the bottom and top faces to construct the element. This difference in ordering
is specified by the given permutation list.

MBCN: 0

MBCN: 1

MBCN: 2

MBCN: 3

MBCN: 4

MBCN: 5

MBCN: 6

MBCN: 7

Client: 0

Client: 1

Client: 2

Client: 3

Client: 4

Client: 5

Client: 6

Client: 7

Element Ordinal: 211

Connectivity: {25,87,17,9,39,12,33,4}

Permutation: {0,3,2,1,4,7,6,5}

Global: 25

Global: 87

Global: 17

Global: 9

Global: 33

Global: 4

Global: 39

Global: 12

Figure 4: Basic element description for a mesh.
Each element is required to have a unique global ordinal, and a specified

connectivity and permutation list. The MBCN canonical vertex ordinals used by
DTK, the client canonical vertex ordinals, and the client global vertex ordinals are

specified at the vertices.

3.3 Mesh Blocks

At the highest level of abstraction, the mesh is composed of mesh blocks. All ele-
ments in a block must have the same topology and number of vertices. A mesh may
contain as many blocks as desired. Multiple blocks with the same mesh topology may
exist. Vertices may be repeated in different mesh blocks provided that they maintain
the same unique global ordinal and coordinates. Elements may be repeated in dif-
ferent mesh blocks provided that they maintain the same unique global ordinal and
connectivity list. All elements and vertices in all blocks of the mesh must have the
same dimension. Multiple mesh blocks may exist in the same spatial region as they
are merely a means of subdividing the mesh into groups of elements based on their
topology. This behavior will be the common when hybrid meshes are involved (e.g.
a mesh that contains hexahedrons and tetrahedrons). Mesh blocks may be either
structured or unstructured.

As an example, consider the 2 dimensional hybrid mesh presented in Figure 5.
This mesh contains both quadrilateral (blue) and triangle (red) elements that share
connecting vertices. In this case, all quadrilaterals should be specified in a single
mesh block and all triangles specified in another mesh block. The vertices shared by
these two mesh blocks may be repeated in either block.
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Figure 5: Hybrid mesh example.
Quadrilaterals (blue) must be specified in a different mesh block than the triangles

(red). Both blocks can contain the mutual mesh vertices that construct their
elements.

3.4 Parallel Decomposition

Mesh blocks and the elements and vertices they contain may be partitioned in any
fashion provided that all vertices, elements, and blocks of a mesh description exist
in a communication space operated on by the same parallel communicator. Different
blocks in a single mesh description may not have different communicators. Each
mesh description may have its own communicator. Global knowledge of the parallel
decomposition of a given mesh description is not required. Only local mesh data
access along with the proper communicator is required.
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4 Geometry

A geometry is simply an object or collection of objects that has n physical dimensions
and a spatial domain Ω ∈ Rn that is bounded by a boundary Γ ∈ Rn. Concrete
examples of geometries in 3 dimensions include cubes and cylinders. A geometry
can have 1, 2, or three dimensions. All geometry objects have a globally unique
ordinal serving as an identification number for the geometry in global operations. To
specify the general position in space of the geometry, each object is required to have
a centroid given in Cartesian coordinates with (x) given for 1 dimensional geometries,
(x,y) for two dimensions, and (x,y,z) for 3 dimensions. A measure is also specified
for each geometry where the measure is defined as length in 1 dimension, area in 2
dimensions, and volume in 3 dimensions. In addition to this data, a geometry must
be able to provide a Cartesian axis-aligned bounding box that encapsulates the entire
geometry. For geometric search operations to be performed, a geometry must be able
to determine if a given point of the same dimensionality as the geometry is contained
within the boundary of the geometry (i.e. r̂ ∈ Ω).

5 Fields

In the most general sense, a field refers to the degrees of freedom computed by a
physics code or the responses derived from those degrees of freedom that have been
discretized across the domain [7]. The field is implicitly bound to the geometric
domain through the degrees of freedom and their association with a mesh or other
geometric components. In a physics simulation, examples of degrees of freedom in-
clude pressure and velocity distributions and examples of computed reponses include
heat flux or reaction rates. In order to access DTK field services, a subset of infor-
mation needed to describe the field is required. A field has a dimension of arbitrary
size. As examples, for scalar fields this dimension is 1, for 3-vectors (such as the
velocity example above in a 3 dimensional computation) the dimension is 3, and for
a 3× 3 tensor the dimension is 9. All local instances of the field must have the same
dimension. A field can have an arbitrary number of local degrees of freedom and this
size can differ from local domain to local domain. No knowledge of the global field
decomposition is required, however, it must exist on a single communicator.

5.1 Field Evaluations

The actual discretization of the field is not explicitly formulated. Rather, access to
discretization of fields and the associated data is generated through function evalua-
tions at points in physical space. Consider a D-dimensional function F (r) of arbitrary
discretization over the spatial domain Ω ∈ Rn where r ∈ Rn and F : Rn → RD. Via
polynomial interpolation, projection, or any other means necessary to most appropri-
ately reflect the discretization of F (r), it then follows that evaluation operations of
the following type can be performed:

f̂ ← F (r̂),∀r̂ ∈ Ω (1)
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where r̂ ∈ Rn is a single point and f̂ ∈ RD is representative of the function F (r)
evaluated at r̂. This operation is not valid for r̂ /∈ Ω. In the context of Ω discretized
by a mesh, these evaluations can instead be written in terms of a single mesh element,
ω ∈ Ω:

f̂ ← F (r̂),∀r̂ ∈ ω (2)

This operation is then not valid for r̂ /∈ ω. If r̂ /∈ ω and r̂ /∈ Ω, then alternative
schemes may be chosen, such as extrapolation, in order to apply the field to r̂. An
evaluator is an object that drives the application of Eq (2).

5.2 Field Integrations

As a complement to field evaluations at points, fields may also be integrated over a
region of space, Ω:

fΩ =

∫
Ω

F (r)dr , (3)

where fΩ is now representative of the integral of the field F (r) over the domain Ω.
In the context of Ω discretized by a mesh, these integrals can instead be written in
terms of a single mesh element, ω ∈ Ω:

fω =

∫
ω

F (r)dr , (4)

where the integral over Ω will be the measure-weighted summation of all element
integrals:

fΩ =
1

mΩ

∑
i

fωi
, ∀ωi ∈ Ω , (5)

where mΩ is the measure of the geometric domain.

5.3 The Relationship Between Mesh and Fields

The relationship between the mesh and the field in DTK is implicitly defined. As
stated in Eq (1), a field evaluation is only valid over a particular spatial domain Ω.
We define the mesh over that same domain Ω. In addition, as stated in Eq (2), the
discrete element components of the mesh, ω, also have a relationship with the field.
Given a particular element in the mesh such that ω ∈ Ω, the field is then also bound
to those discrete components. The discrete form of the field then forms an aggregate
with the discrete form of the mesh. The responses derived from that field also are
also bound to the mesh through this relationship.
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6 Geometric Rendezvous

Relating two non-conformal meshes will ultimately require some type of evaluation
algorithm to apply the data from one geometry to another as specified by Eq. (1). To
drive these evaluation algorithms, the target objects to which this data will be applied
must be located within the the source geometry. In a serial formulation, efficient
search structures that offer logarithmic asymptotic time complexity are available to
perform this operation. However, in a parallel formulation, if these two geometries
are arbitrarily decomposed, geometric alignment is not likely and a certain degree of
communication will be required. A geometric rendezvous manipulates the source and
target geometries such that all geometric operations have a local formulation.

A geometry that is associated with the providing data through function evalu-
ations will be referred to as the source geometry while the geometry that will be
receiving the data will be referred to as the target geometry. Although explicitly for-
mulated with a source mesh and target vertices below, these concepts can be applied
to geometric structures beyond mesh and vertices.

6.1 The Rendezvous Algorithm

The geometric rendezvous concept uses a global formulation for the data transfer
while maintaining a local formulation for the geometric search operations. In DTK,
the following algorithm developed by Plimpton et. al. [2] generates the rendezvous
decomposition through global operations in order to achieve a local framework for
geometric operations.

1. Compute a box that bounds the source and target geometry intersection.

2. Create a rendezvous decomposition by performing recursive coordinate bisec-
tioning on the source geometry.

3. Send source geometry from the source decomposition to rendezvous decompo-
sition.

4. Clone source geometry components which overlap into nearby recursive coordi-
nate bisectioning sub-domains.

5. Build a kD-tree with the local mesh in each rendezvous partition.

This algorithm is elaborated in more detail in the following paragraphs.

Step 1: Bounding box construction. To begin, a global bounding box for the
source and target geometries is constructed using their nodal data. These two bound-
ing boxes are then intersected to produce the bounding box around the intersection
of the two geometries. Those source or target vertices that are not inside this inter-
section bounding box are not considered for the remainder of the algorithm. This
step is motivated by the fact that for many classes of data transfer problems, such as
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2 dimensional surface transfer in a full 3 dimensional problem, only a small subset of
the source and target geometries will be used. This will reduce the number of search
operations and communication operations.

Step 2: Rendezvous decomposition generation. Recursive coordinate bisec-
tioning (RCB) is used the create a new decomposition with the source mesh vertices
[8]. We choose RCB here to repartition the source mesh to achieve a more load-
balanced decomposition for geometric operations. For many physics codes, the par-
allel decomposition of the mesh is generated with physics-related efficiencies in mind.
For the purposes of geometric operations related to search mesh data structures, the
geometric nature of RCB alleviates the potential inefficiencies for geometric opera-
tions that may be incurred by using the original source decomposition. This new
decomposition, the rendezvous decomposition, will serve as an intermediary between
the original source and target decompositions.

Step 3: Send source elements to rendezvous decomposition. The RCB de-
composition is generated only from source mesh vertex information. The element
information must be sent to the rendezvous decomposition and reconstructed for the
point location process.

Step 4: Clone source elements that overlap RCB sub-domains. Because
RCB was performed using source nodal data, there will be source elements that span
the boundary between two or more RCB sub-domains. When this occurs, the source
elements will be repeated in each RCB sub-domain in which their connectivity vertices
exist.

Step 5: Build a kD-tree with the local mesh in each rendezvous partition.
On each rendezvous process, the local mesh is searched with the local target vertices.
A kD-tree is generated using the local mesh for a fast proximity search of the domain
that computes a small subset of the local mesh that resides near the vertex [9].

6.2 The Rendezvous Decomposition

Using the above algorithm, a secondary decomposition of a subset of the source mesh
is generated forming the rendezvous decomposition. The rendezvous decomposition
is encapsulated as a separate entity from the original geometric description of the
domain. It can be viewed as a copy of the source mesh subset that intersects the target
geometry. This copy has been repartitioned in a way that fundamental geometric
search operations are local and proceed globally in a load balanced fashion.

The rendezvous decomposition has several properties. It is defined over a commu-
nicator that encapsulates the union of the communication spaces owned by the source
and target geometries. It is defined inside of a global, axis-aligned bounding box that
bounds the intersection of the source and target geometries. The decomposition is of
the same dimension as the source and target geometries. A rendezvous decomposition
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cannot be generated with source and target geometries of different dimensions (e.g. a
3 dimensional source geometry and a 2 dimensional target geometry cannot be used
to generate a rendezvous decomposition).

6.3 Searching the Rendezvous Decomposition

By implementing the above algorithm, we effectively have a search structure that
spans both parallel and physical space. We first search parallel space by querying
the rendezvous decomposition generated during repartitioning. Global recursive co-
ordinate bisectioning parameters are maintained for global partitioning information,
meaning that a desintation process in the rendezvous decomposition can be deter-
mined for any point on any process. Although this is a search over parallel space,
because of the geometric nature of the rendezvous decomposition it is also a search
over physical space with each process in the rendezvous decomposition owning a spe-
cific subset of the mesh (with marginal overlap at the boundaries).

Once points have been accumulated in the rendezvous decomposition, the local
kD-tree that is formed over the local mesh can be utilized. By searching the kD-tree
in logarithmic time, a subset of the mesh that is in the vicinity of the target point
is generated. This subset, which is typically much smaller than the mesh owned by
a particular rendezvous procees, is then searched with a more expensive point-in-
element operation that transforms the vertex into the reference frame of each element
in the subset with a Newton iteration strategy. This mapped point is then checked
against the canonical reference cell of that element’s topology to determine if the
vertex is contained within.
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7 Parallel Topology Maps

A parallel topology map is an operator, M , that defines the translation of a field,
F (s), from a source spatial domain, ΩS, to a field, G(t), in the target spatial domain
ΩT , such that M : RD → RD,∀r ∈ [ΩS ∩ ΩT ], using both geometric and parallel
operations. There are 3 types of physics-based parallel topology maps: shared domain
maps, interface maps, and network maps [7]. Currently, DTK only supports shared
domain maps.

7.1 Shared Domain Problems

A shared domain problem is one in which the geometric domains of the source and
target intersect over all dimensions of the problem. Figure 6 gives an example of a
shared domain problem in 3 dimensions. Here, Ω(S) (yellow) is the source geometry,
Ω(T ) (blue) is the target geometry, and Ω(R) (red) is their intersection and the shared
domain over which mapping and the rendezvous decomposition will be generated.

Ω(T)

Ω(S)

Ω(R)

Figure 6: Shared domain example.
Ω(S) (yellow) is the source geometry, Ω(T ) (blue) is the target geometry, and Ω(R)

(red) is the shared domain.

The shared domain map has several properties. It is defined over a communicator
that encapsulates the union of the communication spaces owned by the source and
target geometries. The map is of the same dimension as the source and target geome-
tries. A shared domain map cannot be generated with source and target geometries
of different dimensions (e.g. a 3 dimensional source geometry and a 2 dimensional
target geometry cannot be used to generate a shared domain map). The source and
target domains may have an arbitrary parallel decomposition unrelated to one an-
other. There are 3 types of shared domain mapping algorithms implemented in DTK:
the traditional mesh-based rendezvous algorithm, the geometry source map, and the
integral assembly map.
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7.1.1 Mesh-Based Shared Domain Mapping Algorithm

The following mapping algorithm is applied using the rendezvous decomposition to
build a parallel topology map for shared domain problems where both the source and
target geometries are represented by mesh.

1. Determine which target geometry components to operate on by finding those
that reside in the rendezvous decomposition global bounding box.

2. Find which rendezvous sub-domain each target geometry component is inside
of and determine the process which owns this sub-domain.

3. Send target geometry from target decomposition to rendezvous decomposition.

4. Find which target geometry component is inside which source geometry com-
ponent.

5. Send source/target pairings from rendezvous decomposition to source decom-
position.

Step 1: Get the target vertices that are in the rendezvous decomposition
bounding box. We will only operate on those vertices that are contained within
the rendezvous decomposition bounding box. Those that are not will not participate
in mapping.

Step 2: Find rendezvous subdomain for target vertices. On each target
process, the RCB decomposition is searched to find the destination process for the
target vertex in the rendezvous decomposition.

Step 3: Send target vertices to rendezvous decomposition. Each target
vertex is moved to the appropriate RCB sub-domain for the point location step.

Step 4: Find the source elements in which target vertices reside. We now
have source element information and target vertex information in the rendezvous
decomposition. On each rendezvous process, the local mesh is searched with the local
target vertices using the kD-tree and underlying point-in-element functionality.

Step 5: Send element/vertex pairs back to original decompositions. The
source element/target vertex pairs are the map in this case and they will be used to
drive the function evaluation routines. These pairings must be communicated from
the rendezvous decomposition back to the source/target decompositions to complete
the mapping.
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7.1.2 Geometry Source Map

A slight variation of the mesh-based rendezvous algorithm is one in which the source
field is defined over a set of geometric structures instead of a mesh. There are two
potential use cases for this type of map: one in which the target is a set of points
at which the source function should be evaluated and another in which the target
is a group of geometric objects identical to those in the source but with a possibly
different parallel distribution. For the first case, the general point location algorithm
is the same as above but instead an array of general geometric structures is searched.
Those geometries may span the domain of more than one parallel process, but if
they do then their entire description is required on each process. The result of the
mapping sequence is a set of geometry/target point pairs used to drive the evaluation
algorithms for the source functions within the geometries.

For the second use case, a few assumptions about the source and target geometries
are used to enable geometry-to-geometry mappings where the parallel decompositions
of the geometries are not known a priori. The first assumption requires both the source
and target geometries to occupy the same physical space (i.e. a cylinder in the source
code has the same height, radius, and centroid as the cylinder in the target code). If
this assumption is valid, it then follows that if the centroids of the target geometries
are supplied as the target points for this map, then the source geometries in which
they are located correlate to their identical counterparts in target geometries. In this
context, the field evaluations are then interpreted as simply gathering the geometry-
related quanities (which still may involve a function evaluation or integration) and
redistributing them to the target decomposition.

7.1.3 Integral Assembly Map

In certain cases of data transfer, a target physics code may desire quanities averaged
over the spatial domain to be applied to its geometry. If the source code uses the same
geometric representation, then the geometry source map may be used as described
above. However, if the source code uses a mesh-based discretization of the spatial do-
main, then this averaged quantity will require the following measure weighted integral
to be performed over the source field defined on the mesh elements and appropriately
assembled in parallel over the proper geometric structures:

fΩ =

∫
Ω
F (r)dr∫
Ω
dr

, (6)

which if interpeted as an integral of a field defined over a mesh gives:

fΩ =

∑
i

[ ∫
ωi
F (r)dr

]
mΩ

, (7)

where mΩ is the measure of the target geometry and the integrations are as outlined
in § 5.2. If the mesh is assumed conformal to the geometry then:

mΩ =
∑
i

mωi
, ∀ωi ∈ Ω , (8)
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where mωi
is the measure of the ith mesh element that is physically within the geom-

etry.
As the source mesh elements and target geometries may have an arbitrary par-

allel decomposition, the rendezvous decomposition is used to correlate the two. In
this mapping algorithm, the rendezvous decomposition is used to determine which
mesh elements are contained within each geometric entity. As it is assumed that the
mesh is conformal to the geometry, the vertices of the mesh elements are checked for
point inclusion with the geometry where either a single vertex or all vertices may be
required for element inclusion. Once this parallel mapping information is acquired,
the measures of the target geometries are approximated by gathering the measures
of the individual elements that compute their sums. To drive the application of the
map, we use a mesh-element integration function for each field in the source code to
acquire mωi

∫
ωi
F (r)dr in the source decomposition. These measure-weighted element

integrals are then moved into the target decomposition and the sum in Eq (7) is
computed for each target geometry using the computed geometry measures.

7.1.4 Handling Target Objects Outside of the Source Domain

The mesh-based shared domain map and the geometry source map both have several
steps in which target objects may or may not be found in the source mesh. Both
the RCB decomposition search and kD-tree search have the potential to return tar-
get objects that were not found in the source mesh. The source function will not
be evaluated at these points as they are not in the domain ΩS, and therefore the
evaluation operation will not be valid. However, a list of these points in the target
decomposition may be generated for further processing by the client.
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8 An Example

Consider the following 2-dimensional shared domain problem that utilizes the above
concepts and the mesh-based rendezvous algorithm to map a field from one mesh to
another. Note that the data presented in this example was generated externally from
DTK for the purpose of visualizing the algorithm.

A linear triangle mesh is chosen for the source mesh as shown in Figure 7. The
source mesh is decomposed over 4 parallel processes with each process operating on
elements of a single color. The target mesh is defined with linear quadrilaterals and
is given by Figure 8. Here, the decomposition is also over 4 processes but with a
different spatial decomposition. We therefore expect communication between all 4
processes in this example.

Figure 7: Source mesh for 2D shared domain example.
Each color represents the portion of the mesh owned by each parallel process.

Using the rendezvous algorithm, we repartition the source and target geometries
such that they align in a new, geometric-based partitioning as shown in Figure 9.
In parallel search operations, we then first search the partition domains to get the
rendezvous process containing a particular target object. We then communicate this
point to the proper process in Figure 9 and search that process’ domain using the
kD-tree. The source element/target object pairs generated from this search process
are then communicated back to the process that owns the source in element in the
decomposition given by Figure 7.

Shown in Figure 10, we define a field over the source mesh, in this case the peaks
function, to transfer to the target mesh. This function is valid only over the domain
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Figure 8: Target mesh for 2D shared domain example.
Each color represents the portion of the mesh owned by each parallel process.

of the mesh and can be evaluated at any 2-dimensional point that resides in a valid
element.

Finally, an evaluator associated with the source mesh is used to drive peaks func-
tion evaluations on the target mesh vertices in the source decomposition given by
Figure 7. These are then communicated back to the target decomposition, resulting
in the field transferred as shown in Figure 11.
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Figure 9: Rendezvous decomposition for 2D shared domain example.
Each color represents the portion of the mesh owned by each parallel process. Both

the source and target geometries are repartitioned in this fashion such that all
search operations are on-process.
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Figure 10: Source function for 2D shared domain example.
A 2D peaks function is defined over the source domain.

Figure 11: Target function for 2D shared domain example.
A 2D peaks function is transferred to the target domain.
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A DTK Element Topologies
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Figure 12: Canonical vertex connectivity schemes for elements in DTK.
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